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a b s t r a c t 

Background and Objective: Deep learning models (DLMs) have been successfully applied in biomedicine 

primarily using supervised learning with large, annotated databases. However, scarce training resources 

limit the potential of DLMs for electrocardiogram (ECG) analysis. 

Methods: We have developed a novel pre-training strategy for unsupervised identity identification with 

an area under the receiver operating characteristic curve (AUC) > 0.98. Accordingly, a DLM pre-trained 

with identity identification can be applied to 70 patient characteristic predictions using transfer learn- 

ing (TL). These ECG-based patient characteristics were then used for cardiovascular disease (CVD) risk 

prediction. The DLMs were trained using 507,729 ECGs from 222,473 patients and validated using two 

independent validation sets (n = 27,824/31,925). 

Results: The DLMs using our method exhibited better performance than directly trained DLMs. Addi- 

tionally, our DLM performed better than those of previous studies in terms of gender (AUC [internal/ 

external] = 0.982/0.968), age (correlation = 0.886/0.892), low ejection fraction (AUC = 0.942/0.951), and 

critical markers not addressed previously, including high B-type natriuretic peptide (AUC = 0.921/0.899). 

Additionally, approximately 50% of the ECG-based characteristics provided significantly more prediction 

information for cardiovascular risk than real characteristics. 

Conclusions: This is the first study to use identity identification as a pre-training task for TL in ECG 

analysis. An extensive exploration of the relationship between ECG and 70 patient characteristics was 

conducted. Our DLM-enhanced ECG interpretation system extensively advanced ECG-related patient char- 

acteristic prediction and mortality risk management for cardiovascular diseases. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

Cardiovascular diseases (CVD) are a leading cause of death glob- 

lly [1] . More than 19 million global deaths were caused by CVD in

020, an increase of 18.7% from 2010 [2] . Symptoms, specific clini- 

al history, and proper serial physical examinations such as elec- 

rocardiography (ECG), echocardiography, chest radiography, and 
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aboratory testing, are still the cornerstone for the assessment 

nd evaluation of CVD [ 3 , 4 ]. Although several studies have been

onducted on CVD risk stratification [5–7] , improvements can be 

ade. Blood samples are the major component driving these risk 

tratification calculators [8] , which are often lacking due to their 

ntrusiveness. Moreover, these risk scores are available for less than 

0% patients during electronic health record-based cardiovascu- 

ar screening [9] . In addition to structural information, individual 

ealth information is largely unstructured [10] . Further, coronary 

rtery calcium levels provide promising discrimination and risk re- 

lassification for the prediction of incident CVD in intermediate- 

https://doi.org/10.1016/j.cmpb.2023.107359
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2023.107359&domain=pdf
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isk individuals [11] . Additionally, the application of free-text med- 

cal records to develop deep learning disease severity scores sig- 

ificantly enhances mortality prediction in adults with congeni- 

al heart disease [12] . Accordingly, these results highlight the crit- 

cal role of unstructured data in the CVD risk stratification. Al- 

hough clinical guidelines recommend CVD risk assessment, tradi- 

ional methods such as CVD risk prediction equations and newly 

eveloped strategies are not widely conducted for people free of 

ardiovascular disease yet [ 13 , 14 ]. 

An ECG is an important biomedical engineering tool that con- 

ains whole-body anatomic features in addition to heart activities, 

nd is rapid, inexpensive, and readily available. Although experi- 

nced clinicians can provide a comprehensive interpretation of ECG 

ata, a significant amount of vital knowledge may remain hidden 

15] . By learning the appropriate features based on data rather 

han manual engineering [16] , deep learning models (DLMs) can 

xtract features unrecognizable by humans, such as retinal fun- 

us images, for cardiovascular risk factor estimation [17] . More- 

ver, ECG has been applied to extract individual information via 

LM, such as gender and age [18] . Importantly, the performance of 

LMs can reach human levels when large, annotated datasets are 

vailable [19–22] . Previous studies developed a series of ECG-based 

LMs for arrhythmia [23] , myocardial infarction [24] , dyskalemia 

 25 , 26 ], left ventricular dysfunction [ 27 , 28 ], mortality [29] , and

nemia [30] . Moreover, ECGs can be used to predict the occur- 

ence of atrial fibrillation (AF) in patients with sinus rhythm nearly 

ne month earlier [31] . These achievements have significantly im- 

roved certain risk stratifications, prompting our development of a 

omprehensive ECG interpretation system equipped with maximal 

CG potentials for CVD risk stratification. 

A robust and efficient strategy for learning the appropriate 

eatures is critical for DLM development, particularly for transfer 

earning (TL) in small databases. The most widely used TL strat- 

gy in images classification and natural language processing were 

hown in Fig. 1 a . DLM pretrained via ImageNet has previously 

een applied to improve the accuracy of medical image analy- 

is [32] . Additionally, bidirectional encoder representations from 

ransformers using unsupervised learning are now a successful and 

asic architecture for most natural language interpretation tasks 

33] . However, no widely recognized pretrained strategy for ECGs is 

vailable. A functional, sophisticated, and easily accessible database 

s crucial for designing pretrained unsupervised strategies. Individ- 

al identification via an ECG-based DLM has shown promising re- 

ults [34] . Additionally, the geometrical aspects of the heart-lung 

orso available in the ECG [35] data may represent latent cardio- 

ascular status. Importantly, the accessible identity information in 

ospital databases provides an opportunity to apply DLMs to rec- 

gnize individual identities. We hypothesized that there is no di- 

ect relationship between identity and ECG exists, compelling the 

LMs to extract cardiovascular-related features to constitute iden- 

ity information. These high-order features may be associated with 

nown cardiovascular biomarkers, and unknown information exists 

o predict the CVD outcomes. Our study provides a promising TL 

pportunity based on identity identification for future DLM studies 

o enhance the ECG interpretation, as shown in Fig. 1 a . To demon- 

trate the advantages of the proposed TL strategy, this study in- 

ludes a complete experiment, as shown in Fig. 1 b , that predicted 

0 patient characteristics ( Table C.1 ) for thorough CVD risk stratifi- 

ation. 

.1. Literature review 

Recently, studies have applied TL approaches to enhance the 

bility of ECG-based DLMs to diagnose CVDs [36–40] . Increasing 

raining sample size may improve DLM performance. However, 

retraining sources are limited since large, annotated ECG datasets 
2 
ith corresponding disease or laboratory data are often difficult to 

cquire [41] . 

One common approach is supervised TL, which pretrains the 

CG-based DLM on a public dataset. Previous study pre-processed 

CG data as a spectrogram and used these spectrograms for Ef- 

cientNet pre-trained on ImageNet [40] . Utilizing pre-trained Ef- 

cientNet and fine-tuning it resulted in a high F-measure of 

6.13%, up from 74.36%, for the classification of AF on PhysioNet. 

owever, another study using ECG spectrograms for GoogleNet 

lso pretrained on ImageNet but obtained lower performance (F- 

easure:0.811) than random initialization (F-measure:0.843) for 

rrhythmia diagnosis [38] . These results imply that TL with a cross- 

omain needs further investigation to demonstrate consistently 

mproving performance of ECG-based DLMs. In contrast, with the 

omogeneity of source data and target domain, a previous study 

pplied TL for classifying AF using 8,528 ECGs from a premature 

trial contractions database with over 20 million records to im- 

rove F-measure from 0.711 to 0.777 [39] . The highest accuracy 

mprovement of DLM was noted for chest X-ray (CXR) analysis us- 

ng TL of the same anatomical site compared with other anatom- 

cal sites using X-rays and ImageNet [42] . However, the lack of 

vailability of large similar source data has restrained extensive 

VD marker learning using the TL. Moreover, these studies only 

valuated the impact of TL on a limited number of ECG tasks, and 

 comprehensive evaluation of TL performance improvement on 

ider ECG tasks should be conducted. 

In addition, using unsupervised TL with an autoencoder for 

lassifying arrhythmia on ECG data successfully enhanced the F- 

easure from 0.843 to 0.857 [38] . An autoencoder is designed with 

 constrained number of latent features to extract a meaningful 

epresentation [43] , which is only available in networks contain- 

ng latent variables with small dimensions [44] , thereby negating 

he strength of a large network on a DLM [16] . Another study ap-

lied an unsupervised GAN-based framework with outlier detec- 

ion to detect abnormal ECGs [45] . However, this method may be 

nstable during training [46] or suffer from overfitting [47] when 

sed to deal with extensive CVD classifications. In this study, we 

ropose unlimited pre-extraction of CVD-related features via unsu- 

ervised identity recognition that is easily accessible, has sophisti- 

ated strengths, and can be fine-tuned using large networks. 

Research groups currently focus on diagnosing a single type 

f CVD through ECG-based DLM, including paroxysmal AF [31] , 

rrhythmias [ 4 8 , 4 9 ], pulmonary hypertension [50] , valvular heart

isease [ 51 , 52 ], hypertrophic cardiomyopathy [53] , low ejection 

raction (EF) [28] , myocardial ischaemia [ 24 , 36 ], pericarditis [54] ,

nemia [30] , and dyskalemia [ 26 , 55 ]. Some of these algorithms

ave already been applied clinically, such as the AI–ECG dashboard 

t Mayo Clinic [56] and Cardiologs® in emergency department 

CGs [49] . The AI–ECG dashboard at the Mayo Clinic provides diag- 

oses of several cardiac diseases, including left ventricular systolic 

ysfunction, silent atrial fibrillation, and hypertrophic cardiomy- 

pathy. Cardiologs® has been reported to conduct multi-label pre- 

iction in ECG analysis, including abnormal ECG features, differ- 

nt types of arrhythmias, and myocardial ischemia. These studies 

ocused on a single cardiac disease, and its applications were re- 

tricted to a limited type of CVD. However, ECG can provide broad 

iagnostics of various cardiovascular diseases, such as myocarditis, 

yocardial fibrosis, pulmonary embolism, and dextrocardia, as well 

s systemic conditions such as hypothermia, cardiovascular side ef- 

ects of drugs, and electrolyte imbalances including dskalemia and 

yprthyroidism [57] . Nevertheless, an automatic solution for ex- 

ensive diagnostics in ECG interpretation is lacking. Previous stud- 

es have chosen the disease outcome of ECG-based DLM based on 

he understanding of electrophysiological knowledge or relying on 

he experience of assessing patients in clinical care [56] . However, 

CG-based DLM may be able to identify unknown systemic condi- 
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Fig. 1. Overview of experimental design for unsupervised identity identification. a. Contradistinction of training strategies for image recognition, natural language processing, 

and ECG analysis. ECGIDNet provides unsupervised pretrained parameters to make up for the deficiency in DLM studies on ECG. b. Summary of the study design, starting 

with ID embedding extraction and exploration. 
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ions of diseases since it has already demonstrated the ability to 

xtract ECGs features beyond the capacity of an expert, such as 

redicting low EF [28] and mortality [29] . Since the private ECG 

ataset retrospectively collected by institutions is seldom openly 

ublished [58] , the availability of datasets that may influence the 

isease was selected to extensive studying [59] . To extend and fully 

xplore the capability of ECG-based DLM, a comprehensive strategy 

or the systematic extraction of cardiac-related features in the ab- 

ence of large, well-annotated ECG datasets should be developed. 

owever, some conditions might not be accurately predicted by 

he ECG-based DLM due to a lack of proper techniques or large- 

ataset availability. Therefore, in this study, we propose a method 

f pre-training DLM using identity recognition to enhance the DLM 

rediction of known cardiovascular biomarkers and explore un- 

nown information to predict CVDs. 

Importantly, DLM can identify patients with no initial disease 

aving a higher risk of developing CVD. In a previous study, pa- 

ients with normal EF were identified as having low EF by the 

CG-based DLM; they had a 4-fold risk of developing ventricu- 

ar dysfunction compared to patients initially predicted as normal 
3

28] . Another study implemented an ECG-based DLM to predict pa- 

ient age and reported that patients may have a higher mortality 

ate when their ECG-estimated age is greater than their actual age 

y 8 years [60] . In addition, the association between cardiovascu- 

ar risk factors and prediction gap between ECG-estimated and ac- 

ual age remained even in patients with normal ECG. These stud- 

es revealed the important prognostic ability of ECG-based DLM 

n analyzing false-positive cases. Moreover, this ability has also 

een reported in other studies using different medical data as 

odel inputs. For CXR-based DLMs, patients positively predicted to 

ave pulmonary hypertension had 2-fold risk of heart failure (HF) 

ompared to patients predicted as negative [61] . Another study 

emonstrated that CXR-based age predicted by DLM had better 

rognostic performance for cardiovascular and all-cause long-term 

ortality compared to the traditional method [62] with an r 2 

f 0.25 ∼0.37 between CXR-estimated age and actual age. In an- 

ther study, contrast-enhanced computed tomography-based DLM 

chieved an AUC of 0.786 for diagnosing signet-ring cell carcinoma 

f gastric cancer [63] , and these probability scores can be used 

o significantly predict patient prognosis, including overall survival 



Y.-S. Lou, C.-S. Lin, W.-H. Fang et al. Computer Methods and Programs in Biomedicine 231 (2023) 107359 

Fig. 2. The generation of development sets, internal validation sets, and external validation sets. 
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ate and chemotherapy resistance. Similar to the use of TL for DLM 

n medical image study [61–63] , our TL strategy may empower 

CG-based DLM as a more reliable tool to identify healthy patients 

ith a higher risk of developing CVD via comprehensive CVD risk 

ssessment. 

. Method 

.1. Population and dataset 

This study was approved by the Institutional Review Board of 

ri-Service General Hospital, Taipei, Taiwan (IRB NO. C202105049). 

e performed a retrospective multisite study at two hospitals 

n the Tri-Service General System from January 2011 to Decem- 

er 2020. The first site was an academic medical center (hospi- 

al A, NeiHu General Hospital in NeiHu District), with 1,800 beds, 

10 0,0 0 0 annual emergency room (ER) visits, and ∼1,50 0,0 0 0 

nnual outpatient department (OPD) visits. The second site was 

 community hospital (hospital B, Tingzhou Branch Hospital at 

hongzheng District) with 100 beds, ∼15,0 0 0 annual ER visits, and 

40 0,0 0 0 annual OPD visits. Although the two hospitals belong to 

he same hospital group, they opened separately in 1999 and 1946, 

espectively. 

Fig. 2 illustrates the dataset generation process. Data from hos- 

ital A consisted of 250,297 patients aged > 20 years who under- 

ent at least one ECG examination. Among them, 27,824 patients 

ith scans prior to January 1, 2016, were used for validating the 
4 
LMs and following CVD-related outcomes. We selected the earli- 

st dataset as the validation set to maximize follow-up time. The 

emaining 222,473 patients were used for developing DLMs and 

07,729 ECGs with corresponding patient characteristics were used 

o construct a development set. This dataset simultaneously pro- 

ided training and tuning samples for gradient descent and hyper- 

arameter decision, respectively. An internal validation duplicated 

et including 121,585 ECGs from 27,824 independent patients was 

sed to evaluate DLM performance for identity identification, and 

he earliest ECG of each patient was used to generate an internal 

alidation set to conduct an accuracy test on patient characteris- 

ic predictions and CVD outcome analyses. The remaining 31,925 

on-overlapping patients aged > 20 years at Hospital B who met 

he same criteria were also included in this study. Following the 

ame criteria mentioned above, 118,822 ECGs and 31,925 earliest 

CGs were used to generate an external validation duplicated set 

nd external validation set, respectively. 

.2. ECG data 

The ECGs were recorded in a standard 12-lead format and col- 

ected at 500 Hz for 10 s, resulting in 5,0 0 0 sequence signals from

ach lead. The baseline numeric was 0 and the unit was 0.01 mil- 

ivolt. This is called the ECG voltage–time trace for DLM usage. 

uantitative measurements and findings within the final ECG clin- 

cal reports were extracted to identify 31 diagnostic pattern classes 

nd eight continuous ECG measurements. The eight ECG measure- 



Y.-S. Lou, C.-S. Lin, W.-H. Fang et al. Computer Methods and Programs in Biomedicine 231 (2023) 107359 

m

c

D

v

i

p

p

l

c

l

l

r

t

c

u

c

a

m

s

l

2

T

b

d

m

k

g

d

a

a

s

u

a

t

t

b

i

C

s

w

d

c

u

2

m

a

d

d

p

o

c

s

l

9

I

I

I

3

t

i

p

w

(

n

5

a

6

2

2

n

[

l

c

i

i

c

t

f

l

s

t

c

5

l

o

o

f

h

g

H

f

l

r

i  

a

t

t

b

t

s

t

l

w

i

e

E

w

t

u

m

t

u

o

m

t

d

e

m

ents included heart rate, PR interval, QRS duration, QT interval, 

orrect QT interval, P-wave axis, RS-wave axis, and T-wave axis. 

ata for these variables were 93–100% complete, and the missing 

alues were input using multiple imputations [64] . The patterns 

ncluded abnormal T wave, AF, atrial flutter, atrial premature com- 

lex, complete AV block, complete left bundle branch block, com- 

lete right bundle branch block, first-degree AV block, incomplete 

eft bundle branch block, incomplete right bundle branch block, is- 

hemia/infarction, junctional rhythm, left anterior fascicular block, 

eft atrial enlargement, left axis deviation, left posterior fascicu- 

ar block, left ventricular hypertrophy, low QRS voltage, pacemaker 

hythm, prolonged QT interval, right atrial enlargement, right ven- 

ricular hypertrophy, second-degree degree AV block, sinus brady- 

ardia, sinus pause, sinus rhythm, sinus tachycardia, supraventric- 

lar tachycardia, ventricular premature complex, ventricular tachy- 

ardia, and Wolff–Parkinson–White syndrome. These 31 clinical di- 

gnosis patterns were parsed from the structured findings state- 

ents based on key phrases that are standard within the Philips 

ystem. These parameters are called ECG measures for machine 

earning model usage. 

.3. Patient characteristic data 

This study included 70 patient characteristics, as shown in 

able C.1 , collected from the electronic medical records (EMRs) of 

oth hospitals. These patient characteristics were classified into 10 

emographic data, 16 echocardiography results, and 44 laboratory 

arkers (2 for diabetes mellitus, 4 for hyperlipidemia, 5 for chronic 

idney disease, 4 for thyroid function, 6 for hepatitis, 1 for cholan- 

itis, 2 for anemia, 4 for blood profile, 7 for electrolyte, 3 for car- 

iac enzyme, 4 for gas analysis, and 2 for others). Each ECG was 

nnotated by the nearest record of the corresponding patient char- 

cteristics, and records without ECG examination within the corre- 

ponding time limit were excluded, as shown in Table C.1 . Contin- 

ous variables were also limited by the corresponding value range, 

nd some variables with a positive skew distribution were log- 

ransformed. All analyses in this study are based on the values ob- 

ained after processing. All continuous variables were pre-decided 

ased on clinically significant cutoff points to simulate real clin- 

cal practice. For example, EF was binarized to ≤35% and > 35%. 

ertain variables had a U-shaped relationship with clinical progno- 

is, such as potassium (K 

+ ) level [65] . Therefore, two cut-off points 

ere used for further analyses. Moreover, some cutoff points were 

ifferent for males and females, such as high-density lipoprotein 

holesterol; therefore, all cutoff points were presented as two val- 

es for each sex. 

.4. CVD-related outcomes 

The outcomes of interest were all-cause death, new-onset acute 

yocardial infarction (AMI), new-onset stroke, new-onset coronary 

rtery disease (CAD), and new-onset HF. Mortality events were 

efined based on updates from EMRs of the hospitals. Moreover, 

ata for live visits were censored at the patient’s last known hos- 

ital live encounter to limit bias due to incomplete records. The 

ther outcomes were based on a new diagnosis according to the 

orresponding International Classification of Diseases, Ninth Revi- 

ion and Tenth Revision (ICD-9 and ICD-10, respectively) as fol- 

ows: AMI, ICD-9 codes 410.x and ICD-10 codes I21.x; stroke, ICD- 

 codes 430.x to 438.x and ICD-10 codes I60.x to I63.x; CAD, 

CD-9 codes 410.x to 414.x and 429.2 and ICD-10 codes I20.x to 

25.x; HF, ICD-9 codes 428.x, 398.91, and 402.x1, and ICD-10 code 

50.x. Patients with at least one record of less than or equal to 

5% EF were also considered to have HF. For each outcome, pa- 

ients with a corresponding diagnosis before the first ECG exam- 

nation were excluded from follow-up analysis. Therefore, at-risk 
5 
atients in the internal/external validation sets for each outcome 

ere as follows: death (26,048/30,738), AMI (24,011/27,618), stroke 

22,758/24,967), CAD (21,131/23,170), and HF (23,301/26,381). The 

umber of events during the median following years of 5.3/2.7, 

.4/3.1, 5.0/2.7, 4.3/2.4, and 5.2/2.9 on death, AMI, stroke, CAD, 

nd HF, respectively, in internal/external validation sets were 

79/987 (2.6%/3.2%), 353/388 (1.5%/1.4%), 1,704/1,724 (7.5%/6.9%), 

,904/2,869 (13.7%/12.4%), and 1,103/1,4 4 4 (4.7%/5.5%). 

.5. The implementation of DLMs 

The major architecture in this study is a siamese convolutional 

eural network with shift invariance of morphological features 

 26 , 31 ], called ECGIDNet. It uses ECG sequence data to calcu- 

ate high-order features that are used for identity recognition and 

alled identification (ID) embeddings. The architecture of ECGIDNet 

s shown in Fig. 3 , and the total number of learnable parameters 

n ECGIDNet is approximately 2.97 million. We assumed that DLM 

an only use cardiovascular-related features to constitute informa- 

ion, and high-order features, ID embeddings, may be useful for 

urther tasks. We used DLM to learn ID embeddings from ECGs be- 

onging to one or two individuals. Each ECG was recorded using 12 

tandard leads, consisting of 5,0 0 0 sequences. This 5,0 0 0 × 12 ma- 

rix was used as the input without cropping. We developed an ar- 

hitecture composed of 12 ECG lead blocks as ECG12Net [26] . The 

,0 0 0 signals from each lead were spliced and input to the ECG 

ead block. The weights of the ECG lead blocks are shared to avoid 

verfitting. We added two additional non-shared layers comprising 

f a lead-specific module for each ECG lead block, primarily used 

or feature extraction from each lead. 

As the downsampling size of each ECG lead block was 256, 19 

igh-order features belonged to each ECG signal. The general inte- 

rating method for high-order features is average or max pooling. 

owever, we used the routing-by-agreement algorithm to integrate 

eature maps of each output of the final convolution layer for each 

ead [66] . Our preliminary data showed that the performance of 

outing-by-agreement was better than that of the traditional pool- 

ng layer. The size of the feature maps of each lead are 1 × 1 × 128

fter routing-by-agreement. Finally, all the feature maps were flat- 

ened as vectors of 1 × 1,536. These vectors are ID embeddings 

hat may be useful for further tasks. 

ID embeddings were used to recognize individual identities 

ased on the Euclidean distance. The L2 distances of the two iden- 

ity embeddings are large when obtained from distinct people and 

mall if they are from the same person. Accordingly, the loss func- 

ion of ECGIDNet is as follows: 

oss ( f i , f k , y ik , θ ) = 

{
1 
2 
‖ f i − f k ‖ 

2 
2 if y ik = 0 

1 
2 

max ( 0 , θ − ‖ f i − f k ‖ 2 ) 
2 

if y ik = 1 

here f i and f k represent the ID embeddings of the two ECGs. y ik 
s equal to zero when two ECGs are from the same individual and 

qual to one when two ECGs are from different individuals. The 

uclidean distance should be greater than the hyperparameter θ
hen two ECGs are from different individuals. The θ value was set 

o 1 in our experiments. If two ECGs were from the same individ- 

al, the distance was close to zero. 

We used 80% of the ECG data in the development set to opti- 

ize the parameters of ECGIDNet and used the other 20% as the 

uning subset to select the final model. The ECGIDNet was trained 

sing adaptive moment estimation (Adam), which is an improved 

ptimization method for stochastic gradient descent. This method 

inimizes the output of the loss function by iteratively updating 

he parameters of the neural network using a small part of the 

ata over the training dataset every iteration. We trained our mod- 

ls using Adam with standard parameters (B 1 = 0.9, B 2 = 0.999), 

ini-batch size of 32 ECG pairs, and weight decay of 0.01. The 
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Fig. 3. Model architectures of the ECGIDNet, Siamese network, and predicted modules. 
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odel parameters were initialized using the Xavier initialization 

ethod. Due to the extreme imbalance between two ECGs from 

he same patients and from different patients in our development 

et, an equal number of ECGs from the same person and from a 

ifferent person were sampled for each minibatch during training, 

omprising 16 ECG pairs for the same and difference person, each. 

e trained ECGIDNet for 90 epochs (single pass over the full train- 

ng data) with an initial learning rate of 0.0 0 01, which decreased 

y a factor of 10 at the 30 th and 60 th epochs. Moreover, a simple

orm of data augmentation was used to reduce overfitting, which 

nvolved adding Gaussian noise with a mean of zero and vari- 

nce of one into the input of the ECG sequences. ECG12Net was 

mplemented using the mxnet package (R package version 1.3.0). 

e calculated the area under the receiver operating characteristic 

urve (AUC) after each epoch using the tuning subset, and the final 

odel was selected based on the highest AUC. 

We constructed DLMs to predict each patient’s characteristics, 

nd the architecture was based on an extension of ECGIDNet as 

hown in Fig. 3 . A fully connected layer (FC) with the attention 

odule was used after high-order features of the ECGIDNet. The 

rchitectures used to predict continuous and binary variables is ac- 
6 
ording to different variable types of patient characteristics. For bi- 

ary prediction, the neuron of the FC was set to one, followed by 

igmoid output, which provided a probability ranging from zero to 

ne. Binary cross-entropy was used as the loss function. For con- 

inuous prediction, category-wise encoding was used to encode the 

abels. Continuous variables were converted into ordinal variables 

hat included 20 categories. Twenty value intervals were gener- 

ted based on the lower and upper bounds described in Table C.1 , 

nd the values outside the range were limited. For example, a case 

lder than 80 years old is encoded as [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,

, 1, 1, 1, 1, 1, 1]. Cases aged 55 years old will be encoded as [1, 1, 1,

, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], and so on. We used FCs

ith 20 neurons for 20 categories of ordinal variables, and each 

euron was followed by a sigmoid function. Binary cross-entropy 

as used as the loss function for each sigmoid output. 

Similar training details were based on ECGIDNet, and more de- 

ails of the DLMs for predicting patient characteristics are pro- 

ided in Appendix A . The only two changes were oversampling and 

odel selection strategies. To handle class imbalances in the pa- 

ient characteristic label, oversampling was applied to ensure that 

he DLM could learn from the minority classes. For the binary and 
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ontinuous variables converted into ordinal variables, the sampling 

eight was the inverse of the number of classes for each mini- 

atch during training. During training, the performance of the DLM 

as evaluated for each epoch in the tuning subset. For continuous 

ariables, mean absolute error was used. For the binary variable, 

he AUC was used. The model with the best performance on the 

uning subset was selected as the final DLM. 

.6. Implementation of machine learning models 

The eXtreme gradient boosting model (XGBoost) and elastic net 

ere used to build the prediction model using high-order features. 

he high-order features in this study included the ECG measures 

nd ID embedding. We used xgboost (R package version 0.71.2) and 

lmnet (R package version 2.0–16) for implementation. The num- 

er of rounds of XGBoost was set to 150, which achieved the best 

erformance in the preliminary data, and the remaining param- 

ters were set to default. We used the glmnet() function to im- 

lement elastic net and selected the parameter α with the best 

odel in the tuning subset. Parameter α determines the weight- 

ng between Lasso and Ridge. Candidate α was set to [0.0, 0.1, 0.2, 

, 0.9, 1.0], and the remaining parameters were set to their de- 

ault values. We used only the development set to train these mod- 

ls, and the performance assessment of each patient characteristic 

as conducted only once using the internal and external validation 

ets. 

.7. Statistical analysis for identity recognition 

We first analyzed the identification performance and followed 

y performing misclassification analysis and adjustment analysis. 

isclassification analysis evaluated the differences in patient char- 

cteristics when the identity of ECGs pairs was misclassified. Ad- 

ustment analysis evaluated the identification performance after 

xcluding the ECG pairs with large differences in patient charac- 

eristic. These experiments are indicated in Fig. 1 b . 

Identity recognition performance was based on the ECG pairs. 

ll analyses were based on duplicated internal and external val- 

dation sets. All possible pairs of ECGs from the same individual 

ere calculated. However, we only sampled 1,0 0 0,0 0 0 ECG pairs 

nd from different individuals, owing to the extensive computing 

ime. To determine a suitable threshold to distinguish positive from 

egative, we used the value with the largest Youden’s index in the 

uning subset. All analyses were based on the same threshold to 

alculate sensitivity and specificity. 

Moreover, we performed misclassification analysis by analyz- 

ng its effect on the difference of the corresponding ECG states 

hen the identity of ECGs pairs was misclassified. The differences 

n patient characteristics were evaluated for the correct and in- 

orrect pairs in the validation sets, which were compared using 

tandardized mean differences (SMDs). The details are provided in 

ppendix A . 

.8. Statistical analysis for use of ID embeddings 

The following analyses were based on the internal and exter- 

al validation sets, which included only the earliest ECGs of each 

atient. We performed principal component analysis (PCA) on ID 

mbeddings and R-squared measurements among ID embeddings, 

atient characteristics, and ECG measures. These experiments are 

ndicated in Fig. 1 b . We visualized the relationship between ID 

mbeddings and patient characteristics using PCA. We obtained a 

atrix of variable loadings in the tuning subset and used the same 

atrix to rotate the ID embeddings in the internal and external 

alidation sets. To preserve the relative space of the ID embed- 
7 
ings, they were not shifted to zero, centered, or scaled before 

CA. 

To analyze the association between patient characteristics, ECG 

easures, and ID embeddings, we evaluated the explained vari- 

nce (R square) among three of them. The estimation of the ex- 

lained variance is described in Appendix A . 

We conducted machine learning models to predict patient char- 

cteristics, as indicated in Fig. 1 b . ID embeddings and ECG mea- 

ures were used as the input of machine learning model, respec- 

ively. We assessed the correlations between the prediction and 

atient characteristics using XGBoost and elastic nets in the inter- 

al and external validation sets. The AUCs were used to quantify 

erformance based on the pre-assigned cutoff points. We further 

onducted path analysis which analyzed the direct and indirect re- 

ationships between each prediction with ID embeddings and cor- 

esponding patient characteristics, as shown in Fig. 1 b . The rela- 

ionships were investigated using path analysis, an analysis of mul- 

iple regressions based on the hypothesized model. The details of 

he path analysis are provided in Appendix A . In this study, the hy- 

othesized model had both direct and indirect effects. The direct 

ffect is the direct estimation of patient characteristics on their 

eal value. The indirect effect predicts patient characteristics based 

n the estimation of other patient characteristics, which is a medi- 

tor in our hypothesized model. Path diagram illustrated in Fig. D.6 

hows an example of the estimation of brain natriuretic peptide 

BNP) and estimated glomerular filtrate rate (eGFR). The path co- 

fficients were calculated based on the correlation matrix using 

earson’s correlation, polychoric correlation, or polyserial correla- 

ion, where appropriate, implemented using the polycor package 

R package version 4.6–14). 

.9. Statistical analysis for deep learning models 

We evaluated the model performance of TL and randomly ini- 

iated parameters in the internal and external validation sets, as 

ndicated in Fig. 1 b . TL is a method to overcome the limitations of 

 small training sample size. Thus, we compared sample sizes of 

,0 0 0 and 10,0 0 0 ECG samples (if sufficient ECG samples with la-

els were available). For 1,0 0 0 samples, we randomly sampled 800 

xed ECGs from the development set for each DLM and 200 fixed 

CGs from the tuning subset. Differences in the AUCs were evalu- 

ted. 

We used the Bland–Altman plots to present differences in each 

redictive ability using different methods. As shown in Fig. 1 b , we 

elected the best method with the best performance in the tun- 

ng subset as an integrated strategy. These methods are using DLM 

ith randomly initiated parameters, DLM with TL based on iden- 

ity identification, and elastic net using ID embedding as input, as 

llustrated in Fig. D.9 . The final performance of patient character- 

stic prediction is shown using scatter plots and receiver operat- 

ng characteristic (ROC) curves, which was evaluated once in both 

alidation sets. The decision threshold for the binary variable was 

ased on the best cutoff point in the tuning set. 

.10. Statistical analysis for CVD-related outcomes 

We employed a Cox proportional hazards model to predict the 

isk of CVD-related outcomes in the tuning subset, and the predic- 

ion of each model was directly applied to the internal and exter- 

al validation sets. We employed univariable Cox models for ac- 

ual patient characteristics, univariable Cox model for ECG-based 

haracteristics, and multivariable Cox model to integrate them. For 

ariables with a U-shaped relationship to clinical prognosis, we 

sed the pspline() function with 2 degrees of freedom using the 

urvival package (R package version 2.43–3) to fit the U-shaped re- 
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Fig. 4. Identity recognition of ECGIDNet. a. ROC curve analysis of individual identity recognition in validation sets; b. PCA of the correlation between ID embeddings and 

patient characteristics. The category variables are shown in red and blue, and a continuous blue to red gradient displays the increased continuous variables; 
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ationship. The concordance index (C-index) was used to evaluate 

he performance of each model. 

. Results 

.1. Statistical analysis result of identity identification 

First, we evaluated the identity recognition performance of 

CGIDNet. Fig. 4 a shows the ROC curves of patient identification 

rom ECG pairs of the same or different patients. Sensitivity refers 

o the correct identification among different patients, and speci- 

city refers to the correct identification of the same patient. The 

reas under the ROC curves (AUCs) were 0.983/0.982, with sen- 

itivities of 0.960 and 0.943 and specificities of 0.922 and 0.932 
8

or the internal and external validation sets, respectively. Stratified 

nalyses of ECG sources revealed higher performance for the OPD 

nd physical examination center (PEC) patients, with AUCs of 0.992 

nd 0.994 for the internal and external validation sets, respectively, 

han for the inpatient department (IPD) and ER patients. 

We further analyzed the relationship between ID classifica- 

ion and patient characteristics. Fig. D. 1a shows the misclassifi- 

ation analyses of ECG pairs from different patients in the inter- 

al and external validation sets. We calculated the difference be- 

ween the corresponding characteristics of the correct and incor- 

ect pairs, presented as the SMD ( Tables C.2 and C.3 ), and pr o- 

osed 20 critical variables. Interestingly, the characteristic differ- 

nces contributed to the correct identification of ECG pairs from 

ifferent patients, even though they were not provided for unsu- 
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ervised learning. The most critical variables were age, followed by 

NP and albumin (Alb) in the internal validation set and age, fol- 

owed by BNP and eGFR, in the external validation set. The critical 

ariables were highly consistent for both the validation sets. 

To further evaluate whether patient characteristics contribute to 

CGIDNet identity recognition, we excluded ECG pairs with stan- 

ard deviation > 1 of each variable ( Tables C.4 and C.5 ), expecting 

o increase the specificity of identifying the same patients due to 

ewer characteristic differences in ECG pairs and decrease the sen- 

itivity of identifying different patients due to difficulty in discrim- 

nation. We calculated the sensitivity and specificity after exclud- 

ng these ECG pairs and compared them to the performance with- 

ut excluding pairs. As shown in Fig. D. 1b , sensitivity decreased 

rom 0.9597 to 0.9442, and specificity increased from 0.9224 to 

.9358 after excluding the ECG pairs with large age differences 

n the internal validation duplicated-set. A consistent trend of de- 

reased sensitivity and increased specificity in the internal and ex- 

ernal validation duplicated-sets was noted, except for unchanged 

atient characteristics in our EMRs, such as waist circumference 

WC), sex, and drinking status (Drink), which had only one record 

or each patient. This evidence emphasizes that high-order features 

xtracted by ECGIDNet, called identity (ID) embeddings, are corre- 

ated with certain patient characteristics. 

We further visualized the associations between ID embeddings 

nd patient characteristics using PCA, as shown in Fig. 4 b . It shows 

he top five variables with the largest SMDs in Fig. D. 1a in the in- 

ernal and external validation sets. Continuous color gradients for 

ge are shown for both validation sets. The distinguished color gra- 

ients elucidate a strong relationship between ID embeddings and 

he selected characteristics. Results of PCA for all patient character- 

stics are shown in Figs. D.2 and D.3 . 

By estimating the explained variance, we analyzed the in- 

ormation on ID embeddings to predict patient characteristics 

 Appendix B ). The ID embeddings contain much more informa- 

ion regarding patient characteristics than ECG measures, as in- 

icated in Fig. D.4 . Therefore, we directly used ID embeddings to 

stimate individual patient characteristics. To evaluate the superi- 

rity of ID embeddings over ECG measures, we applied them as 

nputs to the machine learning models. Tables C. 6 and C. 7 show 

he detailed performance of elastic net and XGBoost using ID em- 

eddings and ECG measures. The prediction accuracy of elastic net 

sing ID embeddings was better than that of XGBoost, followed by 

GBoost using ECG measures, and elastic net using ECG measures, 

urther confirming the superiority of ID embeddings. As shown in 

ig. D. 5a , we used the Bland–Altman plots to summarize the AUC 

omparisons of four strategies for each patient characteristic. Elas- 

ic net had better performance than XGBoost, with McNemer odds 

atios (ORs) of 3.56/3.56 in the internal and external validation 

ets, respectively, and mean AUC differences of 0.033/0.030, indi- 

ating a more linear relationship between ID embeddings and pa- 

ient characteristics. Notably, XGBoost performed better than elas- 

ic net using ECG measures, implying a nonlinear relationship be- 

ween ECG measures and patient characteristics, thereby elucidat- 

ng better latent cardiovascular feature extraction by unsupervised 

CGIDNet than manual ECG measures. We conducted path analysis 

examples are illustrated in Fig. D.6 ) to investigate the direct and 

ndirect effects of the hypothesized model. Fig. D. 5b shows path 

nalysis of the 15 critical variables with the highest AUCs in elas- 

ic net using ID embeddings, and each column of heatmap shows 

he size of path coefficient for these patient characteristics. Cer- 

ain predictive abilities were directly enhanced by corresponding 

atient characteristics in internal/external validation sets, including 

ender (100.0%/100.0%), age (100.0%/100.0%), BNP (100.0%/79.9%), 

nd Alb (85.7%/90.1%). However, the predictive ability due to cer- 

ain patient characteristics was found to be indirect. For example, 

7.8% and 35.1% prediction of eGFR resulted from the direct effect, 
9 
hile a majority was mediated by ECG age (39.7% and 40.6%, re- 

pectively). Similar results were reported for hemoglobin (Hb) in- 

irectly predicted by ECG hematocrit (HCT), ECG gender, and ECG 

ed blood cells (RBCs). In summary, this analysis demonstrates that 

lthough certain ECG information is lost, ID embeddings are supe- 

ior to ECG measures when predicting patient characteristics, and 

ach ECG-based patient characteristic included indirect cardiovas- 

ular information. 

.2. Performance analysis of transfer learning from identity 

mbeddings 

We used ECGIDNet as a pretrained TL model to enhance feature 

xpression using supervised learning with annotations. To predict 

atient characteristics, we constructed DLMs based on ECGIDNet 

ith additional neuron layers. We compared the performance of 

LMs with pretrained weights from ECGIDNet (with TL) and DLMs 

ith initialized parameters at random (without TL). To demon- 

trate the effects of TL on a limited sample size, we compared the 

redictive abilities of patient characteristics with different sample 

izes of 1,0 0 0, 10,0 0 0, and the full sample of the original data. The

UC performance with and without TL for each patient character- 

stic with different sample sizes is shown in Fig s . D.7 and D.8 . As 

hown in Fig. 5 a , the selected patient characteristic predictions 

ignificantly improved, which demonstrated the superiority of us- 

ng TL based on identity identification in predicting hyperkalemia, 

ypokalemia, lower eGFR, lower free calcium, and higher BNP. Col- 

ectively, the DLM trained with TL was superior to that trained 

ithout TL, particularly for a smaller sample size. The Bland–

ltman plot summarizes the performance improvement of TL for 

he internal and external validation sets ( Fig. 5 b ). The ORs of AUC 

mprovement were 2.21/2.16, 1.17/1.41, and 1.42/1.11 in the inter- 

al/external validation sets using training sizes of 1,0 0 0, 10,0 0 0, 

nd full sample, respectively, which were inversely related to the 

ample size. Moreover, the averages of the improved AUCs with 

L were 0.023/0.019, 0.0 03/0.0 05, and 0.0 03/0.0 08 for the inter- 

al/external validation sets with sample sizes of 1,0 0 0, 10,0 0 0, and 

he full sample, respectively, clearly demonstrating a significant 

mprovement in the performance for a small sample size. Most 

esearchers determine the best training strategy, such as with or 

ithout TL, based on the performance of the model after tuning 

he subsets. Our ID embeddings provided another strategy for di- 

ect prediction with an elastic net and were used to determine 

he suitable models for the tuning subset ( Fig. D.9 ). Fig. 5 c shows 

ignificant improvement of our integrated strategy in full sam- 

le size training compared to traditional DLM (without TL). Using 

ur training strategy, the proportions of increased and decreased 

haracteristic predictions were 4 9%/4 9% and 26%/27% for the inter- 

al/external validation sets, respectively, with an average AUC im- 

rovement of 0.010/0.015. This analysis highlights the superiority 

f our ECG training strategy over the traditional method. 

We used an integrated strategy with the full sample size to 

redict 70 patient characteristics via ECG and presented the per- 

ormance as the ROC curve for dichotomous variables and scat- 

er plots for continuous variables. Fig. 6 a shows the ROC curves 

or predicting patient gender, low EF, higher BNP, lower eGFR, and 

ower free calcium. The algorithm provided AUCs of 0.982/0.968 

or gender distinction, which is better than previous reports with 

n AUC of 0.969 [18] . Moreover, our model exhibited high discrim- 

nation between EF ≤35% and EF > 35% [AUCs = 0.942/0.951 for the 

nternal/external validation sets] with sensitivities of 0.859/0.824 

nd specificities of 0.913/0.924, which is better than the highest 

UC of 0.933 from previous reports [ 27 , 28 , 67 ]. Notably, ECG was

rst applied to predict higher BNP and lower eGFR, with AUCs 

f 0.921/0.899 and 0.881/0.840 in the internal/external valida- 

ion sets, respectively. Satisfactory AUCs of 0.823/0.832 for higher 
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Fig. 5. Performance improvement of TL over ID embeddings. a. Selected comparisons of AUCs from DLMs with TL and without TL in the internal validation set; b. Perfor- 

mance comparison summary between DLMs with and without TL in the internal and external validation sets in a series of sample sizes. The McNemer odds ratios (OR) 

were calculated based on the proportion comparison of > 0 (dark green) vs. < 0 (brown) in y-axis, and the mean differences (MD) were calculated based on the mean of AUC 

difference. The full sample size of patient characteristics with more than 10,0 0 0 is indicated in green, and the full sample size with less than 10,0 0 0 is indicated in yellow; 

c. Comparison of correlations using integrated strategy and traditional DLM studies (without TL) for internal and external validation sets. 
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ree triiodothyronine (fT3) detection were emphasized, although a 

arge training sample size (n = 2,406) was lacking in our train- 

ng strategy. Fig. 6 b shows the complete AUCs of all patient char- 

cteristics with corresponding clinically significant cutoff points 

 Table C.1 ) for the internal/external validation sets. Our strategy 

as superior in the above long-term stable patient characteristics 

nd demonstrated better AUCs of 0.949/0.992 for hyperkalemia de- 

ection than those in a previous study [ 25 , 26 ]. Figs. D.10 and D.11

hows the complete ROC curves of all patient characteristics. Im- 

ortantly, 10 (12.2%)/8 (9.8%) and 62 (75.6%)/52 (63.4%) clinically 

mportant features were identified using ECG with AUCs of > 0.9 

nd > 0.7, respectively, which demonstrates the extensive role of 

LM-enhanced ECG interpretation. Fig s . D. 12 and D. 13 shows 

he complete scatter plots of the prediction compared to actual 

alue for all patient characteristics in the internal/external valida- 

ion sets. For age prediction, our model showed mean absolute er- 

ors (MAEs) of 6.109/6.471 years and correlations of 0.886/0.892 on 

he internal/external validation sets. These values are significantly 

etter than the MAE of 6.9 and correlation of 0.837 in a previ- 

us study [18] . A total of 22 (31.4%) and 15 (21.4%) patient char-

cteristics had a correlation of > 0.5, demonstrating the quantita- 

ive capacity of our model for disease severity. Although certain 

atient characteristics were not highly correlated with the corre- 
10 
ponding ECG parameters, we are confident that DLMs with our 

raining strategy will fully extract the maximum correlations be- 

ween ECG data and patient characteristics to achieve state-of-the- 

rt detection levels. 

Estimation errors may exist in latent cardiovascular features for 

he prediction of CVD outcomes, as described previously [ 18 , 28 ]. 

herefore, we simultaneously used ECG-based and actual patient 

haracteristics to predict the five CVD-related outcomes. We com- 

ared the C-index of the separate Cox model using actual, ECG 

ge, and the combination of both as predictors the internal vali- 

ation set, as shown in Fig. D.14 . The C-indices of real age were 

.785, 0.735, 0.740, 0.6 6 6, and 0.789 for death, acute myocardial 

nfarction (AMI), stroke, coronary artery disease (CAD), and heart 

ailure (HF) predictions, respectively. The ECG-age provided signif- 

cantly higher C-indices of 0.758 and 0.803 for AMI and HF pre- 

ictions, respectively, than real age. The C-indices of the model 

ntegrating both the real and ECG ages were significantly higher 

han those using real age alone for all outcomes of interest. We 

lso applied the risk matrixes to assess the risk of correspond- 

ng age and ECG age groups on CVD outcomes, as shown in 

ig. D.14 . In patients belonging to the younger real age group (nor- 

al group, < 65 years old), 3.79-, 4.27-, 2.77-, 2.10-, and 4.43-fold 

isks of death, AMI, stroke, CAD, and HF, respectively, were pre- 
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Fig. 6. Final prediction performance of each patient characteristic using the integration training strategy. a. ROC curves of specificity against sensitivity to identify patients 

by gender, an EF of ≤35%, BNP of ≥500 ng/L, eGFR of ≤60 ml/min, and fCa of ≤0.88 mmol/L for the internal and external validation sets. The operating point was determined 

by the tuning subset. b. Completed AUCs list of patient characteristics stratified by the corresponding attributes with clinically significant cutoff points for the internal and 

external validation sets. 

11 
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Fig. 7. Risk effect analysis of the actual patient characteristics, ECG-based characteristics, and their combinations. a. Heatmap summary of C-index comparison between 

actual patient and ECG-based characteristics. Dark blue indicates that the actual patient characteristics had a significantly higher C-index, and light blue indicates that ECG- 

based characteristics were superior. Yellow indicates no significant difference between their C-indices; b. Proportion of significant differences between the actual patient and 

ECG-based characteristics on each outcome. c. Heatmap summary of the C-index comparison between the actual patient characteristics and corresponding integrations; d. 

Proportion of significant differences between the actual patient characteristics and corresponding integrations on each outcome. 
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icted when the DLM defined the ECG as the elderly group (AI- 

bnormal, false-positive) compared to the younger ECG group clas- 

ified by the DLM (AI-normal, true negative). CVD outcome pre- 

iction for all 70 patient characteristics for the internal and exter- 

al validation sets is shown in Figs. D.14 and D.153 . We applied a 

eatmap to visualize the C-index comparison between actual pa- 
12 
ient and ECG-based characteristics ( Fig. 7 a ). Although most ECG- 

ased demographic parameters did not perform significantly better 

han the actual parameters in predicting the five outcomes, ECG- 

ased echocardiographic parameters, lipid profiles, renal function 

tatus, and blood cell counts clearly demonstrated the superiority 

f the outcome predictive capacities compared to the actual pa- 
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ameters. Fig. 7 b summarizes the proportion of significant differ- 

nces between actual patient and ECG-based characteristics, and 

t shows that ECG-based characteristics provide more information 

or CVD outcome prediction. 56.5%/47.8%, 55.7%/48.6%, 54.3%/41.4%, 

2.9%/62.9%, and 62.9%/65.7% ECG-based characteristics with sig- 

ificantly higher C-indices for death, AMI, stroke, CAD, and HF, 

espectively, were reported for the internal and external valida- 

ion sets, which were superior to actual patient characteristics, 

ith proportions of 11.6%/14.5%, 7.1%/8.6%, 7.1%/4.3%, 1.4%/2.9%, and 

.7%/7.1, respectively. Fig. 7 c shows the C-index comparison be- 

ween each actual patient characteristic and the corresponding in- 

egrations of the ECG and actual parameters. ECG-based character- 

stics provided significantly more information on outcome predic- 

ions. Fig. 7 d summarizes the proportion of significant differences 

etween the integrated model and actual patient characteristics. 

n summary, the integration model provided more information on 

ost outcome predictions than actual patient characteristics alone. 

. Discussion 

Based on TL from ID embeddings, our study developed an ex- 

ensive ECG interpretation system for 70 patient characteristics 

hat exhibited higher accuracy than previous studies and included 

everal critical markers previously unaddressed, thereby providing 

xtra information on the prediction of future CVD. Importantly, 

e highlight the application of DLM with TL to improve the ac- 

uracy of patient characteristic prediction, particularly in smaller 

atabases. 

The application of unsupervised ID recognition is an extraor- 

inary breakthrough that successfully overcomes the hinderances 

f TL in ECG analyses. Compared to other TL strategies in ECG- 

ased DLM, our unsupervised identity recognition method, which 

an pre-extract CVD-related features, is easily accessible, has so- 

histicated strengths, and can be used on large networks. Previous 

tudies have chosen pre-trained tasks using abundant label data, 

ender, to pre-train DLM, and fine-tuned it to predict rare genetic 

eart disease [68] or Alzheimer’s [69] . We did not choose pre- 

rained tasks, such as sex classification or age estimation, although 

hat label is not manually annotated since the prediction of gen- 

er or age may only be based on a specific part of the biological

eaning. By learning identity identification, the DLM can extract 

arious CVD-related features, as observed in our PCA. Thus, pre- 

ious TL strategies using single annotated labels, such as gender, 

ay have limitations for extensively improving the performance 

f ECG-based DLM for diagnosing CVD, and our method could en- 

ance the ability of DLM to comprehensively diagnose CVD in ECG 

nalysis. 

The success of unsupervised learning from identity extraction 

ed to the proposal of existing unmeasured CVD factors in ECGs, 

onfirming our hypothesis of no direct relationship between iden- 

ity and ECG. Patients with the same chronological age and older 

CG age exhibit a higher prevalence of hypertension, CAD, or low 

F than those with equal or younger ECG age [18] . Moreover, pa- 

ients with an abnormal ECG-based ejection fraction have a 4- 

old higher risk of developing future left ventricular dysfunction 

han patients without echocardiographic left ventricular dysfunc- 

ion [28] . In our study, we demonstrated that ECG-based patient 

haracteristics had better performance in predicting all-cause mor- 

ality and CVD development. Importantly, significant trend in cer- 

ain categories of patient characteristics, such as echocardiographic 

esults, diabetes mellitus markers, and hyperlipidemia-related lab- 

ratory markers, raised a fascinating hypothesis that ECG-based 

LM could predict these outcomes via certain important known 

nd unknown patient characteristics. For example, the known re- 

ationship between echocardiographic results and these outcomes 

70] and the association between diabetes mellitus and abnormal 
13 
CG [71] have been reported. Our ECG-based DLM with identity 

dentification learning strategy could comprehensively extract im- 

ortant features, including risk factors that have not been well 

efined before, to provide better prognosis to predict these out- 

omes. Similar studies for extensive examination by DLM in medi- 

al images have been conducted [72] , demonstrating that systemic 

onditions, including diabetic retinal disease diagnoses, glycated 

emoglobin, total cholesterol, and triglycerides, can be identified 

rom low-cost external eye images rather than using fundus pho- 

ographs as input data, using a pre-trained DLM on ImageNet. They 

ommented that this initial finding implied that DLM can be used 

o detect other underlying systemic conditions, including known 

nd novel conditions, such as thyroid disease [73] and adverse car- 

iac outcomes [74] , through imaging of the external or anterior 

egment of the eye. Our study uncovered many ECG-based char- 

cteristics and determined the significance of estimation errors in 

uture CVD outcomes, which could be extensively applied to en- 

ance comprehensive CVD outcome prediction. 

Comprehensive screening of potential CVDs using a single ECG 

xamination is critical in our study. In addition to acute cardiac 

iseases with typical ECG findings, such as myocardial infarction 

nd arrhythmias, large amounts of ECGs in patients with long- 

erm CVDs exhibit subtle changes, which are easily overlooked and 

ndetected by even experienced physicians [15] . Apart from the 

argely missing laboratory data in traditional risk-score screening 

ystems with potentially limited application [9] , our unattended- 

xecution ECG interpretation system exhibits simple and exten- 

ive properties to provide a holistic evaluation of CVD. Moreover, 

ts application as an automatic and prompt alarming tool for CVD 

an help clinical physicians identify potential unrecognized dis- 

ases early [75] . Importantly, with DLM and our TL strategies, our 

pproach could be applied to detect certain rare and potentially 

ethal CVDs that had not been established before. 

This study had some limitations. First, the ECGs were obtained 

rom a single ethnic group, although DLM might be diagnosed with 

CG undisturbed by race [76] . Therefore, an international study 

nvolving different racial and ethnic groups should be conducted. 

econd, some variables, such as smoking status, were self-reported 

nd may have been biased. Third, DLM parameters initialized at 

andom may result in variable performance. The limited comput- 

ng resources hindered repeated experiments, especially for tuning 

he hyperparameter of the DLM, evaluating the performance under 

ifferent sam ple sizes of training data in the analysis of TL, and 

ne-tuning all parameters of machine learning models, which pri- 

arily used default settings. 

. Conclusion 

In conclusion, we developed a novel TL method for an ECG 

LM based on unsupervised identity extraction. The ECG-based 

LM can extract CVD-related features via identity identification 

hat can be provided as a pre-trained task for fine-tuning DLM for 

xtensively predicting CVD markers, including many that were pre- 

iously undisclosed. More than 50% of ECG-based characteristics 

ignificantly improved, and ECG-based characteristics can provide 

ore prognostic information regarding the development of CVDs 

han real characteristics. As an inexpensive and practical tool for 

he screening and risk stratification of CVDs, our strategy could be 

urther applied to detect rare diseases by ECG using DLM in the 

ear future. 
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